

ศรัณยา ธาราแสวง ${ }^{1}$ สิริมา สายรวมญาติ ${ }^{2}$ สุวรรณา เธียรอังกูร ${ }^{2}$ บุญญาณี ศุภผล1 ปิยะวรรณ บูชา ${ }^{1}$ และณุฉัตรา จันทร์สุวานิชย์ ${ }^{1}$ "สถาบันิิจัยสมุนไพร "ำำน้กคครีองสำอางและวัตลุอ้นตราย กรมวีทยาคาสตร์การแพทย์

ยาและเครื่องสำอางเป็นผลิตภัณซ์ที่มีความสำค้ญูกับการดำรงชีวิตของมนุษย่ โดยทัวไบมักมีส่วนผสมของน้ำ ซึ่งเหมาะ แก่การเจริญเติบโตของจุสินทรีย์ ส่งผลให้เกิดการบนเบื้อนของจุลินทรีย์ ซึ่งเป็นสาเหตุทำให้เกิดการเน่าเสียแสะความไม่คงตัว ของผลิตภัณฑ์ แนวทางหนีงในการไ้องกันการปนเปื้อนของจุลินทรีย์ในผลิตภัณฑ์ยาและเครี่องสำอางคือ การ่ใส่สารกันบูด เพือบ้องกันการเจริญของจุสินทรีย์ และเป็นการเพิมความคงตัวเพือยืตอายุการใช้งานของผลิตรันท์ให้ยาวนานขึ้น แต่สารกันบูด ทีนำมาใช้โดยส่วนใหญู่เป็นสารสังเคราะห์ แม้ว่าจะมีขระสสิษธิภาพแต่อาจทำให้เกิดอาการแพ้กับผู้ใช้ใด้ง่าย แนวทางการแถ้ไข ทางหนึ่งคือ การใช้สารกันบูดจากธรรมชาติ ไนเดือนกันยายน 2554 -เมษายน 2556 คณะผู้วิจัยได้ำเนินการศึกษาวิจัยสารสกัด จากสมุนไพรที่มีถทธิ์ยับยั้งการเจริญูเตินโตของจุลินทรีย์ และมีตักยภาพในการพัฒนาเ็นสารกันบูดที่สามารถใช้ในผลิตรัณท์ยา และเครื่องสำอางได้ โดยเลือกสมุนไพร 2 ชนิด ได้แก่ ผลพิสังกาสาและเปสือกมังคุด นำมาสกัดด้วยวิธีซอกเลทโดยใช้ ตัวทำละลายเฮกเฮนสกัดผลพิลังกาสาและตัวทำละลายไดคลอโรมีเทนสกัดเปลือกมังคุด จนได้สารสกัดที่เหมาะสม จากนั้น นำไปเตรียมผลิตภัณฑ์โดยใช้ครีมเป็นแมททรีกซ์ที่ค่าความเข้มข้นร้อยละ 0.1 และร้อยละ 0.5 ตามลำดับ นำครีมที่เตรียมขึ้น ไปทดสอบฤทธิ์กันบูด การทตสอบประสีทธิภาพดทธี์กันบูดของสารสกัตจากสมุนไพรใช้วิธี Antimicrobiat effectiveness ตาม วิธีมาตรฐาน $15 O 11930$ (2012) Cosmetics-Microbiology-Evaluation of the antimicrobial protection of a cosmetic product เป็นเวลา 28 วัน โดยเเรียบเทียบกับสารกันบูดสังเคราะห์ 2 ชนิด ศือ Paraben concentrate และสารกันบูด ผสมของ Diazolidiny (Urea และ lodopropynyl Butylcarbamate (Supgard) และใช้สารกันบูดจากสมุนไพรผสมที่มีขาย ในท้องตลาด 1 ขนิด โดยใช้ครีมพื้นเป็นแมททริกซ์เช่นกัน ผลการศึกษาพบว่า สารสกัดจากผลพิลังกาสา และสารสกัดจากเปลือก ผลมังคุดสามารถยับยั้งการเพิมจำนวนของแบคทีีรีย Staphyiococcus aureus ATCC 6538 แต่ไม่สามารถยับยั้งการ เพิ่มจำนวนของแบคทีเรีย Pseudomonas aerugnosa ATCC 9027 และ Escherichia coli ATCC 8793 รวมถึงเชื้อรา Candida albican ATCC 10231 และ Aspergillus brasiltensIs ATCC 16404 จากผลการศึกษานี้ สารสกัดจากผลพิลังกาสา และสารสกัดจากเปลือกมังคุดในรูปแบบสารเดี่ยวมีถทธิ์ยับยั้งการเจริญเติบโตของแบคทีเรียได้เพียงชนิดเดียว ไม่ออกฤทธิ์กว้าง (broad spectrum) จึงยังมีประสิทธิภาพไม่เพียงพอที่จะใข้เป็นสารกันบูดในผลิตภัณฑ์ยา และเครื่องสำอาง อย่างไรก็ตาม ยังมีสมุนเพรอีกหลายชนิดที่มีถทธิ์ต้านจุนินทรีย์ซึ่งสามารถนำไปศึกษาวิจัยต่อเพื่อพัฒนาเป็นสารกันบูดที่มีประสิทธิราพ และความบ่ลอดภัย

คำสำคัญ: สารกันบูด, สารสกัดจากสมุนไพร, พิสังกาสา, มังคุด

Drugs and cosmetics are important products for human life These products are usually composed of some water which resutt in moroorgansm contammator, spoing and unstable of products Adding preservatives into these products is one way to prevent the microorganism contamination and also to prolong product shelf life. Because of the effectiveness of synthetr preservatives, it is reasonable to popularly use However, using the synthetic preservatives makes consumer easy to get allergy One way to solve this problem is using the naturat preservatives in September 2012 to April 2013, the researchers had studied antimicrobial activity of some plants to investigate their properties as preservatives in arug and cosmetic preparations in this study, the fruit of Ardisa elliptica Thunb. and the fruit null of Garcima mangostana Linn. were selected The two herbal plants were extracted by soxhlet extraction with hexane for the fruit of Ardisla elliptica Thunb. and with dichloromethane for the fruit hull of Garcmia mangostana Linn The extracts were added to matrix, which in this study was cream in the concentration of 0.1 percent and 0.5 percent, respectively These two sample were tested for preservative effectiveness using method according to standard procedure; Antimucrobial effectiveness in 15011930 (2012) Cosmetics-MicrobiologyEvaluation of the antimicrobial protection of a cosmetic product for 28 days and compared with wo synthetic preservatives i.e Paraben concentrate and a mixture of Diazolidinyl Urea and lodopropynyl Butylcarbamate (Supgard ${ }^{\text {B }}$) and one naturat preservatives mixture by using cream base as a matrix The result showed that both herbd extracts could reduce only the number of Staphylococcus aureus ATCC 6538 but they could not reduce the number of Pseudomonas aerugmosa ATCC 9027 . Eschencha cou ATCC 8793, Candida albican ATCC 10231 and Aspergilius brasiliensis ATCC 16404 The results of such studies revealed that the extract from the fruit of Ardisia eluptica Thunb and from the frut hul of Garcina mangostono Linn. in smgle compound could mhibt the bacterial growth for only one species not broad spectrum. Thus, these extracts have not enough effectiveness to be used as a preservative in drugs and cosmetics. However, there are another herbal plants with an antmicrobial activity can be developed to achieve a good efficacy and safe preservative.

Keywords: Preservative, Herbal extracts, Ardisia elliptica Thunb., Garonia mangostana Linn.

บทนำ
(8) ลิตภัณฑ์ต่างๆ ที่นำมาใช้กับร่างกายมนฺษ์์ ทั้งยา ความคงสภาพทางจุลชีววิทยา (microbıological stability) ของผลิตภัณฑ์ ซึ่งหมายถึง ความต้านทานของผลีตถัณฑ์ ต่อการเจริญเติบโตของเชื้อจุสินทรีย์ที่ไม่พึงประสงค์ รวม 2 ประการ คือ ป้องกันมีใหู้้บริโกคเกิตโรคแทรกซ้อนจาก เชื้อจุลินทรีย์ที่ทำให้เกิดโรค และควบคุมคุณภาพของผลิตกัณฑ์

มิให้เสียไประหว่างการเก็บรักษาและการใช้ของผู้บริโภค จากการทำลายของเชื้อจุลินทรีย์ ทีอาจปรากฏูให้เหัน ในลักษถะต่างๆ กัน เช่น เกิดก๊าซซึึงมีกลินเหม็น สูญเสีย ความหนืดดีเเปลียนแปลง และอิม้ลชันแยกชั้น เป็นต้น สาเหตุ ตองการปนเปื้อนเชื้อจุลินทรีย์มาจากหลายสาเหตุ ได้แก่ ตัวบุคคลากรผู้ผลิต วัตถุดิบและน้ำที่ใช้ในการผลิต ภาขนะ เครื่องมื่อที่ใช้้ในการผลิตเละขั้นตอนการผลิต เครี่องมือทีใช้ บรรจุและภาชนะบรรจูรวมทั้งฝาบิด เป็นต้น ผลิตรัณฑ์ที

ผู้บริโภคเปิดบริโภคได้หลายๆ ครั้ง จะมีโอกาสปนเปื้อนเชื้อ ได้มากขึ้น เช่น การพบการปนเปื้อนจุลินทรีย์ใน cleansing cream ที่บรรจุในขวดปากกว้าง จากวิธีการใช้ที่ผู้ใช้ได้คืนครีม ที่เหลือจากมือกลับลงขวดอีกทุกครั้งที่ใช้ การป้องกันการ ปนเปื้อนและเจริญเติบโตของเชื้อจุลินทรีย์ แบ่งได้เป็น 2 ทาง คือ ทางฟิสิกส์และทางเคมี การใช้สารกันบูดเป็นวิธีทางเคมี ที่นิยมมากที่สุด เพราะง่าย สะดวกและได้ผลดี ผลิตภัณฑ์ที่เชื้อ เจริญได้ดีที่สุด คือผลิตภัณฑ์ที่มีน้ำอยู่ด้วย ได้แก่ ยาน้ำเชื่อม ยาแขวนตะกอน ครีม โลชั่น เป็นต้น

สารกันบูดหรือสารกันเสีย (preservatives) ${ }^{1}$ คือ สารที่ ใช้ฆ่าหรือยับยั้งการเจริญเติบโตของเชื้อราและแบคทีเรีย ที่อาจจะปนเปื้อนติดมากับผลิตภัณฑ์ต่างๆ ในระหว่างการผลิต หรือการใช้ เพื่อป้องกันไม่ให้ผลิตภัณฑ์เสื่อมคุณภาพหรือ เกิดการเป็นพิษจากเชื้อที่ปนเปื้อนทำให้เป็นอันตรายแก่ผู่ใช้ กลไกการออกฤทธิ์ของสารกันบูดคือ การรบกวนการเจริญ เติบโตและแบ่งตัวของจุลินทรีย์ รวมทั้งกระบวนการสร้างและ สลายโดยกลไกต่างๆ เช่น ดัดแปรสภาพในการซึมผ่านได้ของ สารที่เยื่อหุ้มเซลล์หรือแปรสภาพเอนไซม์หรือโปรตีนที่มีอยู่ ในเซลล์ เป็นต้น สารกันบูดที่นิยมใช้กันมากในทางยาหรือ เครื่องสำอาง ได้แก่ กลุ่ม parabens (parahydroxybenzoate) ทำลายเชื้อจุลินทรีย์โดยกลไกการแปรสภาพโปรตีนของ จุลินทรีย์ ต้นเหตุสำคัญอย่างหนึ่งที่ทำให้ยาเสื่อมคุณภาพคือ น้ำที่ใช้ในการเตรียมยาปนเบื้อนด้วยจุลินทรีย์ ได้แก่ Pseudomonas spp, Xanthomonas spp, Agrobacterium spp, Streptococcus spp; Bacillus spp, Staphylococcus spp ยีสต์ และเชื้อรา จุลินทรีย์ที่มักพบในยาและทำให้ยา เสื่อมคุณภาพ ได้แก่ Aspergillus spp และ Penicillium spp ส่วนจุลินทรีย์ที่ทำให้เกิดโรคที่พบในเภสัชภัณฑ์ ได้แก่ Salmonella spp, Pseudomonas spp บางชนิด Staphylococcus aureus และ Escherichia coli

จากรายงานผลการศึกษาสารในเครื่องสำอางที่ก่อให้ เกิดอาการแพ้ในกลุ่มศึกษาอาการผื่นสัมผัสของอเมริกาเหนือ ${ }^{2}$ (North American Contact Dermatitis Group) พบว่า สารกันบูดเป็นสารที่ทำให้ผู้ใช้เกิดการแพ้ ผื่นแพ้ และ ระคายเคือง (allergy irritation) เป็นอันดับที่สองรองจาก น้ำหอมหรือสารแต่งกลินหอม (fragrances) ซึ่งสารกันบูดที่ พบการแพ้ได้บ่อย ได้แก่ Parabens, Formaldehyde, Imidazolidinyl Urea, Methylchloroisothiazolinone และ Phenoxyethanol ตังนั้นในหลายๆ ประเทศ จึงควบคุม

ให้จำกัดปริมาณของสารกันบูดที่ใช้ในผลิตภัณฑ์ และระบุชนิด ของสารกันบูดที่บรรจุรัณฑ์ด้วย ในประเทศอังกฤษและ สหรัฐอเมริกา ${ }^{3}$ ได้กำหนดให้เครื่องสำอางต้องอยู่ภายใต้ การควบคุมของกฎหมายและมีความปลอดภัยต่อผู้บริโภค โดยจะต้องผ่านการประเมินจากคณะกรรมการที่เกี่ยวข้อง มีสารกันบูดที่มีความแตกต่างกันมากมายที่มีความเหมาะสม ในการนำมาใช้ในเครื่องสำอาง แต่เครื่องสำอางที่มีจำหน่าย ในท้องตลาดกลับมีการใช้สารกันบูด เพียงไม่กี่ชนิด เช่น Parabens, Formaldehyde, Formaldehyde releasers และ Methylchloroisothiazolinone/Methylisothiazolinone เป็นต้น ในประเทศนิวซีแลนด์ ผลิตภัณฑ์ยาทุกชนิดที่มีสาร กันบูดหรือน้ำยาฆ่าเชื้อต้องแจ้งปริมาณของสารกันบูดและ น้ำยาฆ่าเชื้อ สำหรับเครื่องสำอางต้องเป็นไปตามข้อกำหนด ของ Consolidated Cosmetic Products Group Standard (ERMA). ${ }^{\wedge}$ การใช้สารกันบูดต้องใช้ในปริมาณที่เหมาะสม หากใช้เกินกว่าปริมาณที่กำหนดไว้ ย่อมส่งผลเสียต่อผู้บริโภค ทำให้เกิดการระคายเคือง รวมถึงอาการแพ้ต่างๆ และเป็น สาเหตุให้เป็นโรคผิวหนังได้ การเลือกใช้สารจากธรรมชาติที่มี คุณสมบัติในการทำลายหรือยับยั้งการเจริญเติบโตของ เชื้อจุลินทรีย์ได้แก่ สารสกัดจากสมุนไพร น้ำมันหอมระเหย สารต้านอนุมูลอิสระ ${ }^{5}$ ในผลิตภัณฑ์แทนสารสังเคราะห์เป็น อีกทางเลือกหนึ่งที่จะหลีกเลี่ยงผลเสียเหล่านี้

วัตถุประสงค์

เพื่อศึกษาชนิดของสารสกัดจากสมุนไพรที่มีคุณสมบัติ ยับยั้งหรือต้านทานการเจริญเติบโตของจุลินทรีย์ที่ทำลาย ความคงสภาพทางจุลชีววิทยาของผลิตภัณฑ์ และมีศักยภาพ ในการพัฒนาเป็นสารกันบูดที่สามารถใช้ทดแทนสารกันบูด สังเคราะห์ในผลิตภัณฑ์ยาและเครื่องสำอาง จากการทบทวน ผลงานวิจัย พบว่า สารสกัดพิลังกาสาและสารสกัดจากเปลือก มังคุดมีฤทธิ์ในการต้านเชื้อจุลินทรีย์หลายชนิด ผู้วิจัยจึงเลือก สมุนไพรทั้ง 2 ชนิดมาดำเนินการทดลอง

วิธีการวิจัย

การเตรียมสารสกัดจากผลพิลังกาสา

นำผลพิลังกาสาสดมาล้างด้วยน้ำให้สะอาด อบแห้งใน ตู้อบลมร้อน ที่อุณหภูมิ 50 องศาเซลเซียส บดให้เป็นผง ละเอียด แล้วสกัดด้วยวิธีซอกเลทโดยใช้เฮกเซนเป็นตัว ทำละลาย นำส่วนที่สกัดได้ด้วยเฮกเซน ระเหยให้มีปริมาตร เหลือครี่งหนึ่งโดยใช้เครื่องระเหยภายใต้ความดันต่ำ จากนั้น

ตั้งทิ้งไว้ที่อุณหภูลิห้อง เพื่อให้สารแยกขั้นและตกตะกอน ออกมา กรองตะกอนที่ได้และทำตะกอนให้บริสุทธิ์มากขึ้นโดย การตกผลึกด้วยเอทานอล ชั่งน้ำหนักสารสกัดที่ได้ การเตรียมสารสกัดจากเปลือกมังคุด

คัดเลือกเปลือกมังคุดสดลักษณะสีม่วงเข้ม นำเปลือก มาล้าง ผึ่งให้แห้งทีอุณหภูิิ้้อง หั่นเน็นชิ้นขนาดเล็ก อบแห้ง ในตู้อบ ที่อุณหภูมิ 50 องศาเซลเซียส จนแห้งแล้วนำไป๋ บดหยาบ จากนั้นนำมาสกัด้้ยยวิธีซอกลลทโดยใช้ใดคลอโรมีเทน เป็นตัวทำละลาย ระเหยตัวทำละลายออกด้วยเครื่องระเหย ภายใต้ความดันต่ำ จากนั้นนำสารละลายที่มีสารสกัดหยาบ ละลายอยู่มาแยกให้บริสุทธิ์มากขึ้น ด้วยเทคนิคคอลัมน์โครมาโทกราฟี โดยใช้ซิิิกาเจลเป็นวัฏภาคคงที่ และใช้ระบบ ตัวทำละลายผสมระหว่างไดคลอโรมีเทนและเมทานอลใน อัตราส่วน 9 ต่อ 1 เป็นวัฏภาคเคลื่อนที่ ชั่งน้ำหนักสารสกัดที่เด้ การพัฒนาสูตรตำรับครีม

สูตตตำรับครีมที่พัฒนาขึ้น ใช้เป็นผลิตรัณฑ์ตัวอย่าง สำหรับทดสอบประสิทธิภาพกันบูดของสารสกัดสมุนไพร จากผลพิลังกาสาและจากเปลือกมังคุด จากนั้นพิจารณาค่า ความเข้มข้นที่เหมาะสมของสารสกัดสมุนไพรทั้งสองชนิด ซึ่งทำหน้าที่เป็นสารกันบูดในสูตรตำรับ ในการพิจารณาอาศัย หลักการพัฒนาสูตรตำรับตามองค์ความรู้ด้านเภสัชกรรม ร่วมกับลักษณะของสีผลิตอัณฑ์ที่ได้
การทดสอบ Antimicrobial effectiveness ของสารสกัด จากสมุนไพรในผลิตภัณฑ์ครีม

การทดสอบประสิทธิภาพกันบูดของสารสกัดสมุนไพร ใช้วิวีมาตรฐาน ISO 11930 (2012) Cosmetics-MicrobiologyEvaluation of the antimicrobial protection of a cosmetic product โดยสำนักเครื่องสำอางและวัตถุันตราย กรมวิทยาศาสตร์การแพทย์โดยศึกษาเปรียบเทียบประสิทธิภาพ กันบูดกับสารกันบูดจำนวน 3 ชนิด ที่มีจำหน่ายใน้้องตลาด ใช้เวลาทดสอบ 28 วัน

ผลการวิจัย

ผลการเตรียมสารสกัดจากผลพิลังกาสา

ผลพิลังกาสาบดแห้ง 900 กรัมหลังผ่านกระบวนการ สกัดได้สารสกัดจำนวน 10.50 กรัม สารสกัดที่ได้มีลักษณะเป็น ผงแห้งสีสีเมดังแสดงในรูปที่ 1

รูปที่ 1 สารสกัดจากผลพิลังกาสา
ผลการเตรียมสารสกัดจากเปลือกมังคุด
เปลือกมังคุดบดแห้ง 1000 กรัม หลังผ่าน กระบวนการสกัดได้สารสกัดจำนวน 120 กรัม สารสกัดที่ได้ มีลักษณะเป็นผงแห้งสีเหลืองดังแสดงในรูปที่ 2

รูปที่ 2 สารสกัดจากเปลือกมังคุดด

ผลการพัฒนาสูตรตำรับครีมและค่าความเข้มข้น ของสารสกัดสมุนไพรที่ใช้

สูตตตำรับครีมที่พัมนาขึ้นเป็นอิมัสชั่นชนิดน้ำมันในน้ำ (oil in water emulsion) ซึ่งประกอบด้วย Polyethylene (21)Steary. Ether, Polyoxyethylene(2)Stearyl Ether, Isopropyl Myristate, Carbomer 940, Triethanolamine และน้ำ

ค่าความเข้มข้นของสารสกัดจากผลพิลังกาสาและ จากเปลือกมังคุดที่ใชใในสูตรตำรับ คิดเป็นร้อยละ 0.1 และ 0.5 ตามลำด้บ

การทดสอบ Antimicrobial effectiveness ของสารสกัดจากสมุนไพรในผลิตภัณฑ์ครีม
ผลการทดสอบประสิทธิภาพกันบูดของสารสกัดจากสมุนไพรเปรียบเทียบกับสารกันบูดจำนวน 3 ชนิด ที่มีจำหน่าย ในท้องตลาดในผลิตภัณฑ์ครีม พบว่า สารสกัดจากผลพิลังกาสาและสารสกัดจากเปลือกมังคุดสามารถยับยั้งการเพิ่มจำนวน จุลินทรีย์ Staphylococcus aureus ATCC 6538 ดังแสดงในตารางที่ 1

ตารางที่ 1 การทดสอบ Antimicrobial effectiveness ของสารสกัดจากสมุน้พร 2 ชนิดเปรียบเทียบกับสารกันบูดจำนวน 2 ชนิดในผลิตภัณฑ์ครีม

รายการทตสอบประสิทธิภาพ กับเชื้อจุลินทรีย์	Inoculum count (Ni)	ผลการทดสอบ (Day 28) ของแต่ละผลิตภัณฑ์				
		Parabens	Mixture of herbal extracts*	$\begin{gathered} \text { Supgard }^{\oplus} \\ 0.5 \% * * \end{gathered}$	สารสกัด จากผล พิลังกาสา	สารสกัด จากเปลือก มังคุด
Staphylococcus aureus ATCC 6538	5.79	0	456	0	0	1.63
$\log N(c f u / g)$						
Log10 reduction ($R \times$)		5.79		5.79	5.79	4.16
Pseudomonas aeruginosa ATCC 9027	5.73	0	6.79	0	4.45	6.79
Log $\mathrm{N}(\mathrm{cfu} / \mathrm{g})$						
Log10 reduction (Rx)		5.73	-1.06		1.28	-1.0
Escherichia coli ATCC 8739	5.64	0		0	5.11	5.99
$\log N(\mathrm{cfu} / \mathrm{g})$			¢17.			
Log10 reduction (Rx)		5.64	0.11	5.64	0.53	-0.35
Candida albicans ATCC 10231						
Log N (cfu / g)	6.18	0	61	0	5.56	6.26
Log10 reduction (Rx)	-	6.18	0.57	6.18	0.62	-0.08
Aspergillus brasiliensis ATCC 16404						
Log N (cfu/g)	5.56	4.65	4.81	0	4.72	4.78
Log10 reduction (Rx)	-	0.91	0.75	5.56	0.84	0.78

หมายเหตุ *สารสกัดสมุนไพรที่มีส่วนผสมของ Terminalia chebula, Schizandra chinensis, Leonurus sibiricus,
Zanthoxyium bungeanum และ Cinnamomum sieboldii
**สารกันบูดสูตรผสมของ Diazolidiny Urea และ Iodopropynyl Butylcarbamate

วิจารณ์ผล

ผลิตภัณท์ยาและเครื่องสำอางที่มีน้ำเป็นส่วนประกอบ มักจะถูกปนเปื้อนด้วยเชื้อจุลินทรีย์ได้ง่าย เชื้อจุลินทรีย์ที่พบ ในผลิตภัณฑ์เครื่องสำอาง มักพบในลักษณะหลายๆ เชื้อ รวมกัน ได้แก่ แบคทีเรีย Staphylococcus aureus, Pseudomonas aeruginosa และ Escherichia coli และเชื้อรา Candida albican ${ }^{6}$ โดยเฉพาะอย่างยิ่งผลิตภัณฑ์ ที่มีน้ำมัน เปปไทด์ และคาร์โบไฮเดรต เป็นส่วนประกอบ อยู่ด้วย ผลิตภัณฑ์เหล่านี้เป็นอาหารเลี้ยงเชื้ออย่างดี จึงจำเป็น

ที่จะต้องรักษาสภาพของผลิตภัณฑ์เหล่านี้ไม่ให้เกิดการเน่าเสีย ก่อนถึงมือผู้บริโภคและหลังจากที่ผู้บริโภคเปิดใช้แล้ว การเติม สารกันบูด (preservative) จะช่วยลดจำนวนจุสินทรีย์ได้ทาง หนึ่งสารกันบูดมีหน้าที่ยับยั้งการเจริญของจุลินทรีย์ที่มีอยู่หรีอ ปนเปื้อนมาภายหลัง ซึ่งจำเป็นมากสำหรับผลิตภัณฑ์ ที่ต้องเปิดใช้หลายๆ ครั้ง เช่น ยาตา ยาหยอดหู การเลือกใช้ สารกันบูดสำหรับเภสัชภัณฑ์นั้นต้องเลือกให้เหมาะสมกับ ผลิตภัณฑ์แต่ละชนิด โดยทั่วไปควรมีคุณสมบัติ' คือ ยับยั้งการ เจริญเติบโตของจุลินทรีย์ได้หลายชนิด ออกฤทธิ์ได้ที่สกา

ความเป็นกรด-ด่างของเภสัชภัณฑ์นั้นๆ มีความคงตัวใน ผลีตภัณฑ์ได้นาน ไม่มีสี หรือกลิ่นที่จะมีผลต่อผลิตภัณฑ์ และไม่เป็นพิษต่อผู้ใช้ สารต้านจุลชีพที่ใช้เป็นสารกันบูด ในเภสัชภัณฑ์ ได้แก่ Chlorocresol (0.1%) Benzylalcohol (1.0%) Cresol (0.3%) ใช้ในยาฉีดชนิด single-dose และ multiple-dose ขณะที่ Chlorhexidine acetate or gluconate (0.1\%) Benzalkonium chloride (0.3%) Thiomersal (0.1%) ใช้ในผลิตภัณฑ์ยาตาและผลิตภัณฑ์สำหรับ contact lens สำหรับ Methyl, ethyl and propyl p-hydroxyhenzoate Benzylalcohol (1.0\%) Parabens (0.3\%) Benzoic and sorbic acid (0.3-0.5\%) ใช้ในผลิตภัณฑ์ ยารับประทานในรูปแบบของเหลว และ Parabens (0.3%) Chlorocresol (0.1%) Phenylmercuric nitrate (0.01%) ใช้ในผลิตภัณซ์ในรูปแบบครีม สำหรับสารกันบูดสังเคราะห์ ที่นิยมใช้ในเครื่องสำอางได้แก่ Parabens (Methyl-, Ethyl-, Propyl-, Butyl-) ซึ่งเป็นชนิดที่นิยมใช้มากที่สุดประมาณ 80% นอกจากนั้นยังมี Urea derivatives (Imidazolidinyl Urea, Diazolidinyl Urea), Isothiazolones (Methylchlorothiazolinone, Methylisothiazolinone), Halogen(lodoPropynyl Butyl Carbamate (IPBC), Methyidibromo Glutaronitrile), Formaldehyde (DMDM Hydantion) และ Organic acid \& Others (Sodium Benzoate, Sorbic acid, EDTA, Phenoxyethanol, Triclosan, Quaternium-15)

มีรายงานการวิจัยว่า การสกัดผลพิลังกาสาโดยวิธี chromatographic purification ได้สาร syringic acid, isorhamnetin and quercetin มีฤทธิ์ต้านแบคทีเรีย Salmonella โดยมีค่า minimal inhibitory concentrations (MICs) ระหว่าง 15.6 และ $125.0{\text { ไมโครกรัมต่อมิลลิลิตร }{ }^{8}}^{8}$ สำหรับสารสกัดจากเปลือกมังคุด มีรายงานว่าสาร α-mangosteen ที่สกัดจากเปลือกมังคุด มีถทธิ์ต้านแบคทีเรีย Staphylococcus aureus, Pseudomonas aeruginosa Escherichia coli i^{9} และ Candida albican ${ }^{10}$ ในการวิจัยนี้ จึงคัดเลือกสมุนไพร 2 ชนิดดังกล่าว มาทำการสกัดด้วยวิธี ซอกเลทโดยใช้ตัวทำละลายเฮกเซนและไดคลอโรมีเทน ตามลำดับ เพื่อให้ได้สารสกัดที่มีปริมาณเพียงพอสำหรับใช้ ในการวิจัย จากนั้นจึงนำสารสกัดที่ได้มาผสมในผลิตภัณฑ์ เพื่อทดสอบฤทธิ์การเป็นสารกันบูด โดยเลือกผลิตภัณฑ์ เพื่อทดสอบเป็นผลิตภัณฑ์ที่ใช้ภายนอกรูปแบบครีม เพราะมี ส่วนผสมของน้ำ และน้ำมัน ซึ่งเชื้อจุลินทรีย์จะเจริญเติบโตได้ มากกว่าผลิตภัณฑ์อื่น และไม่เลือกประเภทยารับประทาน

เนื่องจากต้องพิจารณาเรื่องความปลอดภัยสำหรับการใช้เป็น ยารับประทานด้วย ซึงจะต้องเพิ่มการดำเนินงานวิจัยอีกมาก สำหรับปริมาณสารสกัดจากสมุนไพรที่เลือกใช้ในผลิตภัณฑ์นั้น พิจารณาโดยอาศัยหลักการตั้งสูตรตำรับตามองค์ความรู้ ด้านเภสัชกรรม และสักษณะของสีผลิตภัณฑ์ที่ได้ เนื่องจาก สารสกัดจากสมุนไพรในขนาดความเข้มข้นที่เหมาะสม จึงจะสามารถออกฤทธิ์เป็นสารกันบูดได้ โดยไม่ทำให้สี ของผลิตภัณฑ์เปลี่ยนแปลงมากจนไม่น่าใช้ จากการพิจารณา ดังกล่าวพบว่า สารสกัดจากผลพิลังกาสาใช้ในสูตรตำรับคิดเป็น ปริมาณร้อยละ 0.1 สารสกัดจากเป่ลือกมังคุดใช้ในสูตรตำรับ คิดเป็นปริมาณร้อยละ 0.5 หลังจากเตรียมครีมพื้นแล้ว ทำการ แบ่งเป็น 5 ตัวอย่าง ใส่สารทดสอบแตกต่างกัน 5 ชนิด ได้แก่ 1) สารสกัดจากผลพิลังกาสา 2) สารสกัดจากเปลือกมังคุด 3) สารกันบูดผสมที่มีขายในท้องตลาดชือ Supgard ${ }^{\circledR} 0.5 \%$ มีส่วนประกอบได้แก่ Diazolidiny Urea และ lodopropynyl Butylcarbamate 4) สารผสมของพาราเบน 2 ชนิด (15% Methyparaben และ 15% Propy(paraben) 5) สารผสม ของสารสกัดสมุนไพรที่มีขายในท้องตลาดซึ่งบระกอบด้วย Terminalia chebula, Schizandra chinensis, Leonurus sibiricus, Zanthoxylum bungeanum และ Cinnamomum sieboldii

การทดสอบประสิทธิภาพฤทธิ์กันบูดของสารสกัด สมุนไพร ใช้วิธีมาตรฐาน ISO 11930 (2012) Cosmetics-Microbiology-Evaluation of the antimicrobial protection of a cosmetic product โดยห้องปฏิบัติการสำนักเครื่องสำอาง และวัตถุอันตราย กรมวิทยาศาสตร์การแพทย์ ใช้เวลา ทดสอบ 28 วัน ผลการศึกษาพบว่า สารสกัดจากผลพิลังกาสา และสารสกัดจากเปลือกผลมังคุด สามารถยับยั้งการเพิ่ม จำนวนของแบคทีเรีย Staphylococcus aureus ATCC 6538 ได้ แต่ไม่สามารถยับยั้งการเพิ่มจำนวนของแบคทีเรีย Pseudomonas aeruginosa ATCC 9027 และ Escherichia coli ATCC 8793 รวมถึงเชื้อรา Candida albican ATCC 10231 และ Aspergillus brasiliensıs ATCC 16404 จากผลการศึกษาดังกล่าวจะเห็นได้ว่า สารสกัดทั้งสองชนิด มีประสิทธิภาพ สามารถยับยั้งเชื้อแบคทีเรียได้เพียงหนึ่งชนิด แต่แบคทีเรียที่พบในผลิตภัณฑ์ยาและเครื่องสำอางมีหลายชนิด เช่น Pseudomonas aeruginosa, Escherichia coli และเชื้อรา Candida albican ซึ่งสารสกัดจากสมุนไพร ทั้งสองชนิดไม่สามารถยับยั้งการเพิ่มจำนวนของจุลินทรีย์ เหล่านี้ได้ ดังนั้นสารสกัดจากผลพิลังกาสาและสารสกัดจาก

เปลือกมังคุดจึงไม่เหมาะสมที่จะนำไปใช้เป็นสารกันบูดใน ผลิตภัณฑ์ยาและเครื่องสำอางประเภทครีมซึ่งปป็นรูบแบบที่ไว ต่อการเจิญของเซื้อจุลินทรีย์ นอกจากนี้สารผสมของสารสกัด สมุนไพรที่วางขายในท้องตลาดก็ไม่สามารถยับยั้งการ เจริญเตินโตของเขื้อจุสินทรีย์ได้เช่นกัน อย่างไรกัตาม ยังมี สมุนไพรอีกหลายชนิดที่มีประสิทธิภาพต้านเชื้อจุิินทริย์ได้ เช่น ทองพันชั่ง (Rhinacanthus nasutus (L.) Kurz)" ขุมเห็ดเทศ (Cassia alata (L.) Roxb) $)^{12}$ ซึ่งหากมีการศึกษา โดยเลือกสมุนไพรมาสกัดด้วยตัวทำละลายทีเหมาะสมหรือ นำสารสกัดสมุนไพรหลายๆ ชนิดมาผสมกันเป็นสารผสม (mixture) อาจได้ผลิต ถัณซ์สารสกัดสมุนไพรเดี่ยวหรีอผสมที มีฤทธิ์ต้านเชื้อจุลินทรีย์กว้างขึ้น (broad spectrum) และสามารถใช้เป็นสารกันบูดในผลิตรัณฑ์ได้

สรุปผลการวิจัย

จากผลการวิจัยนี้พบว่า สารสกัดจากผลพิลังกาสา และสารสกัดจากเปลือกมังคุด มีประสิทธิภาพสามารถยับยั้ง การเพิมจำนวนของแบคทีเรีย Staphylococcus aureus ATCC 6538 แต่ไม่สามารถยับยั้งการเพิมจำนวนของเบคทีเรีย Pseudomonas aeruginosa ATCC 9027 และ Escherichia coli ATCC 8793 รามถึงเเซื้อรา Candida albican ATCC 10231 และ Aspergillus brasiliensis ATCC 16404 สารสกัดทั้งสองชนิดมีประสิทธิกาพ สามารถยับยั้งเื้อแบคทีเรีย ได้เพียงชนิดเดียว แต่การปนเปื้อนชื้อจุลินทรีียในผลิตภัณฑ์ยา และเครื่องสำอางเกิดจากเซื้อหลายชนิด จึ่ไม่เหมาะสมที่จะใช้ สารสกัดจากผลพิลังกาสาหรือสารสกัดจากเปลือกมังคุดใน รูบแบบสารเดี่ยวเป็นสารกันบูดในผลิตรัณต์ยาและเคืื่อสสำอาง ประเภทครีมเนื่องจากยังมีประสิททิภาพไม่เพียงพอทีจะยับยั้ง การเน่าเสียของผลิตรัณฑ์ที่เกิดจากเชื้อจุลินทรีร์อื่นๆ ได้ อย่างไร็็ตาม ยังมีสมุนไพรอีกหลายขนิดที่มีดทธิ์ต้านจุลินทรีย์ ซึ่งสามารถนำไปศึกษาวิจัยต่อเพื่อพัฒนาเป็นสารกันบูดที่มี ประสิทธิภาพและปลอดภัยต่อผู้ใช้ต่อไป

เอกสารอ้างอิง

1. สุธี เวคะวากยานนท์. สารปรุงแต่งยา กรุงเทพมหานคร ไทยวัฒนา พานิช; 2531 .
2. ภาควิชาเภสัชเคมี คณะเภสัชศาสตร์ มหาวิทยาลัยศิลป่ากร. สารกันเสียในเครื่องสำอาง. สารเคมีในชีวิตประจำวัน[อินเทอร์เน็ต] [เข้าถึงเมื่อ 15 พ.ค 2556] เข้าถึงได้จาก http://www.pharm su.ac.th/cheminife/cms/index.php/bath-room/preservative.htmb

3 สำนักหอสมุดและ ศูนย์สารสนเทศวิทยาศาสตร์และเทคโนโลยี กรมวิทยาศาสตร์บริการ กระทรวงวิทยาศาสตร์และเทคโนโลยี สารกันเสียจากสมุนไพรในเครืองสำอาง (Preservative from Herbs in Cosmetics) [ประมวลสารสนเทศพร้อมใช้] 2553.
4. Oakley Amanda, editor Contact allergy to preservatives [Internet] [cited 2013 May 15] available from http:// dermnetnz.org/dermatitis/preservative-aliergy.html
5 C.Anthony. Natural Preservatives Cosmetics and Tolletries [Internet] 2003 [cited 2013 May 15] available from http://www.cosmeticsandtoliletries.com/ regulatory/organic/2671996.html
6. Muhammed HJ. Bacterial and Fungal Contamination in Three Brands of Cosmetic Marketed in Iraq. Iragi J Pharm Sci [Internet]. 2011 [cited 2013 June 19] available from. http://wuw.iasj.net/iasj/func/fuiltext\&ald/4370
7 เยาวพา บุญปู่ การควบคุมจุสินทรีย์ในเรสสัชภัณฑ์และเครี่องสำอาง [อินเทอร์เน็ต] [เข้าถึงเมื่อ 8 พ.ค 2556] เข้าถึงได้จาก http:// www.gpo.or.th/rdi/htmi/costume.htmi
8. Phadungkit M and Luanratana O Anti-Salmonella activity of constituents of Ardisia elliptica Thunb Nat Prod Res [Internet] 2006 [cited 2013 June 19] available from http://www.ncbintm.nin.gov/pubmed/16901814
9 Pedraza-Chaverri J. Cardenas-Rodiguez N, Orozco-Ibarra M and Perez-Rojas JM. Medicinal properties of mangosteen (Garcinia mangostana). Food and Chemical Toxicology [Internet] 2008 [cited 2013 June 19] available from. http://www.zoranvolleyart.si/images/ Mango/01.pdf
10 Kaomongkolgit R, Jamdee K and Charsomboon N Antifungal activity of alpha-mangostin against Candida albicans. Journal of Oral Science [internet]. 2009 [cited 2013 June 19] available from http://www.jos.dent. nihon-u.ac.jp/journal/51/3/401.pdf
11 Rao M.U, Sreenivasulu M and Chengaiah B. Rhinacanthus Nasutus (Linn) Kurz. A comprehensive review International Journal of Pharma Research and Development [Internet] 2010 [cited 2013 June 19] available from http://www.ijprd.com
12. Alalor C.A., Igwilo C.I and Jeroh E... Assessment of Antifungal Potential of Aqueous and Methanol Extracts of Cassia alata Asian Journal of Biological Sciences [Internet]. 2012 [cited 2013 June 19] available from: hitp://wuw.docsdrive.com/pdfs/40971.pdf

